Teoria Espectral
More examples of closed, closable, adjoint, self-adjoint operators

In the following we will present some examples and remarks concern-
ing closed, closable, adjoint, self-adjoint unbounded linear operators.

Example 1. It is easy to construct, using an algebraic basis, a lin-
ear operator whose domain is the entire Hilbert space, but which is
unbounded. (We are of course assuming that the Hilbert space is infi-
nite dimensional.) By the closed graph theorem, this operator cannot
be closed. So it provides an extreme example of an operator which is
not closable.



Example 2. /t is also possible for an operator to have many closed
extensions. Here is an example. The Hilbert space is H = L*(R) and
the operator is

(D( A)={f e CFR / f(x dx—/_ixf(x)dx:O}

(A)() = (14 2%) f ().

If one takes Fourier transform, this operator becomes the differential

2
operator—dd—g + 1 with “initial conditions” f(0) = %( ) =0.
Set . ¢
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Then the closure of A is

{D@ ={fe L’(R): (1+&)f € L*(R), (1 +&)f L po,p1}
(Af)(E) = 1+ &) f().
Choose any nonzero p,q € span{py,p;} and a nonzero p- €

span{py, p1 } which is perpendicular to p. The following are all closed
extensions of A.

{D(An ={f € L*R): (1+&)f € [*(R),(1+&)f L p}
(Af)E) = (1+)f (),
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{D<A2> ={/ € ’(R): (1+&)f € L*(R)}
(A:£)(§) = (1 +€)[(©),

{D(A3) = D(A) ={ofs+ fraeC (1+&)f € {po.pi}*}
Aslas + f) =aq+ (1+E)f.

142

oFirst ®Prev eNext eLast e Go Back eFull Screen eClose eQuit



Example 3. The following example shows that it is possible to have
D(T*) ={0}. Let

(i) H = L*(R),
(ii) {e, }nen be an orthonormal basis for H and
(iii) for each k € N, f,.(x) = e'**. Note that f,. ¢ H.

We define the domain of T' to be D(T') = By(R), the set of all bounded
Borel functions on R that are compact support. This domain is dense
in L*(R). For € D(T),

1o=31 [ hwieta) deles
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1. We first check that 7" is well-defined. Let ¢ € D(T'). Then there is
some integer m such that () vanishes outside of [—mm, mx]. Then,
foreach k € Z,

™

/ Z ful@)p(z) dz = Z filaypte) do = [ e miptmt)

- —T

is the km-th Fourier coefficient of the function m(mt). Since the sum
of the square of all Fourier coefficients is, up to a factor of 27, the L?
norm of my(mt), which is finite, so 7" is well-defined.
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2. We now check that D(T*) = {0}. Lety € T* and ¢ € D(T) =
By(R). Choose an m € N with ¢(x) vanishing except for z in
[—mm, mr]. Then

(o, Ty = (T Te V)

= [ T e e v)
=Z<%< ) a)-
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Since

me mw 2mm it k=1
dr = / i(l—k)x dr = )
Ao ey de =TT =00

The series _ (e, 1) f, converges in H and
n=1

oo

(0, T*) = {0, > (en, V) fu)

n=1
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This is true for all bounded Borel functions ¢ supported in [—mm, mm]

so that
T ) = i(en,zb)ﬁ a.e. on [—mm, mm]|
and -
00 > Il 2 W liaoney = 3 Nens ) Fiome).

Since this is true for all m, we must have (e,,, 1)) = 0 for alln € N and
hence ¢ = 0.
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We recall the following notion.

Definition 1. Let f be a complex valued function defined on |« 3]
where —oo < a < 8 < oo. f is said absolutely continuous if there
exists an integrable function g on |«, 3| such that

ﬂ@=LZ@ﬁ+ﬂw.

Observe that f is continuous on |«, 5] and differentiable a.e. with
f'(x) = g(x) a.e on |«, B]. But it is not necessarily in L*|(«, 8)]. This
can be seen by taking the function f(x) = x*/* in L*(|0, 1]). We denote
the set of all absolutely continuous functions on [«, 8] by AC(|«, f]).



Example 4. We consider three different Hilbert spaces:

Hy = L*([a, 8]), —o0 < a < f§ < oo,
Hy = L*([ar, 0)), —00 < a < 00,
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We consider the operators T; : D; C H; — H;, j = 1,2, 3 defined as

Dy ={geH,:9g= fae. for f e AC([o, B]), f(a) =0 = f(B), and
'€ L([o, B])}

Dy={g9g€ Hy:g= fae.for f € AC([a, 3)),foreach 8 > «, f(a) =0,
and f' € L*([e, 8])}

D3 ={g €Hs:g=f ae. for f € AC(|o, f]),foreach — oo < a < < o0,
and f' € H3}

with
Tig=1f, j=12,3
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We will show that

1. The linear operators 7 are unbounded symmetric operators in H ;,
j=1,2,3.

2. T3 is a self-adjoint operator.
3. 17 and 15 are not self-adjoint operators.
4.1, =T,7=1,2,3.
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First we notice that D; = H;, for each j = 1,2,3. To show this for
D, we recall that the linear subspace spanned by the set {z* : k =
0,1,2,...}is dense in L*([a, 8]) because of the class of all complex
polynomials is dense in L*([«, 3]). On the other hand, z* € D, since
each z* can be approximated in L*([a, (]) by a function f in D;. For
instance, for ¢ > 0 suitable, we can take f as being

p

(a+e)fellr—a), a<z<a+te,
flx) =1 ", ate<z<fB—c¢,

—B-efelx—p), p-e<z<p.

This means D; = H;.
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To show that D, = H, and D; = Hs. We notice that the linear
subspace spanned by the set {z* e k= 0,1,2,...} is dense
in L?((—o0,00)) and in consequence their restrictions to [«, co) are
dense in L*([a, 0)). We then can approximate each 2 e~*"/2 by a
function in D, or Ds, respectively.

The operators 7}, 7 = 1,2, 3 are unbounded. We consider for oo <

and k > — the functions f; defined by
(& (z — ), if ©ela,a+1]
filr)=2—k(z—w), if z€|a+,a+3]
0, if xela+2 00).
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Next we observe that,

a+2/k 2
2 2
— d — = .

and
a+2/k
Ak :/ K dz — 2.
From this we deduce that
IT3fell _ 22
Ifell G)Y? ~

Hence the operators are unbounded.
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We show next that 7, are symmetric. It is done by using integration
by parts. Let f,g € Dy, then

(T f,9) = (if',g) = i/B f'(w)

=1 f(y —z/f

(f,’Lg) (f?Tlg

One can verify the same for the operators T, and 75 by noticing that if
f € Dythen lim f(x) = 0and for f € D3 we have that lim f(z) = 0.
T—r00

r—+o00

(0.1)
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Next we will compute de adjoint 7} de 7). Let D] be the set
Di={geH,:g= fae. where f € AC(lo, B]), [ € H.}

Notice that (0.1) also holds for g € D7, so the domain of 7 contains
Diand T} g = if' for g € D;. We shall show that D(T}) = D;. This
can be done if we prove that 7} C 17 but T} # 1. Let f € D} and let
h be the absolutely continuous function given by

hiz) = / T f(s) ds + C
where C is a constant selected so that

/a “[£(s) + ih(s)] ds = 0.
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For every g € D1, integration by parts yields

B _ B
/a ig'(s) Fs) ds = (Tog, f) = (. T, f) = / o(s) TF 1 (5) ds

Then
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In particular, taking g € D; given by

gla) = [ [F(s)+ ins)) ds

we get that
B
/ F(s) + ih(s)[2ds = 0.
That is,

(@) = —ih(z) = —i / T i(s)ds—iC, ae.

and h is absolutely continuous with h'(z) = T} f(x). Thus f € Dj.
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Using the previous analysis we can prove that 7 g = ¢f’ on the do-
main

Dy;={g9€ H,:9= fae where f € AC([oa,B]), B> a, [ € Hs}

and T3¢ = if" on the domain Dj = D;.

Since D7 € Dy, D5 C D, and D; = Ds;. We have that 77 is self-
adjoint and that 77, 1™ and 15~ are well-defined.
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It remains to prove that 7; = 77" for j = 1, 2. In either case we have
T, CTCT;

since T; C T7. It suffices then to show that Dy-- C D;.
Let f € Dr+, then for all g € D} we have

(17" f,9) = (f,T;g).
Since T7* C T7, we have T7" f = if" and then

0= (if",9) — (f,ig).
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If 7 = 1, this means

O—z/ f'(s ds+z/ﬂf(s)g’(s)ds
=ilf(8)9(B) = fla) gla)).
<x_a) € D;andthen g(z) = Eﬁ:z)) € Di, we

Taking first g(z) = =
obtain f(a) =0=f
Ifj =2, letg(x)=e"

(B) wh|ch implies that f € D;.
(=) to yield f(a) = 0. Thus f € D,.

Next elast eGo Back eFull Screen eClose e

oFirst ®Prev e




Remark 1. We observe that 1| has uncountably many different self-
adjoint extensions. Indeed, let~y € C with |y| = 1 and define T, in H,
on

Dy, ={g € L*((o, 8)) : g = [ a.e. where f € AC([a, B)), f' € Ha,
and f(5) = v fla)}

byT.g =if'. Each'T, is self-adjoint and extends T}. For each ~, we
have T\ C T, C 17.
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Exercise 1. Consider the symmetric unbounded operators 1;, j =
1,2, 3 defined in Example 4. Use the Basic Criteria to show that

(a) 15 is a self-adjoint operator.

(b) T andI; are not self-adjoint operators.

Remark 2. The sprectrum of a linear operator of A is union of the
three disjoint following sets:

(i) o,(A) the point spectrum: the set of all eigenvalues.

(i) o,.(A) the residue spectrum: the set of all \ that are not eigenval-
ues and such that the image of A — T" is not dense in X.

(iii) o.(A) the continuous spectrum: the complementary of o,(A) and
o,.(A) it is also the set of \ such that A — A is injective with dense
image, but (A — A)~! is not continuous.



Example 5. Here is an example which shows, firstly, that an un-
bounded operator T may have o(T') = () and secondly that “just
changing the domain of an operator” can change its spectrum. The
Hilbert space H = L*([0, 1]).
(i) If D(T) = AC|0, 1] withTf =if’, theno(T) = C.
In fact o,(T)) = C, since, for any A € C, e="** is an eigenfunction
for T with eigenvalue ).

() If D(T) = {f € AC[0,1] : f(0) = 0} with Tf = if’, then
o(T) =10.

Indeed, for any A € C, the resolvent operator (A — T')~ ' is

(BAT)0)a) =i [ e ) dt



(iii) Let a € C be nonzero. If D(T)={f € AC[0,1] : f(0) = af(1)}
with T'f = if’,then o(T) = {—ilna + 2kw : k € Z}. Again the
spectrum consists solely of eigenvalues. If A = —iln o + 2k for
some k € Z, then ¢ is an eigenvalue for T' with eigenvalue ).
For A\ not of the form —iIna + 2k7 for all k£ € Z, the resolvent
operator (A —T)'is

(BT @) =i [ Gala (o) de

with
( i\ 6i>\(t—x—1)
1 — if x <t,
— et
G)\(CU, t) — <
,L'ei)\(t—x) If -
—_— X )
(1 — e
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